Oscillation criteria for second-order quasi-linear neutral difference equations
نویسندگان
چکیده
منابع مشابه
Oscillation criteria for second-order linear difference equations
A non-trivial solution of (1) is called oscillatory if for every N > 0 there exists an n > N such that X,X n + , 6 0. If one non-trivial solution of (1) is oscillatory then, by virtue of Sturm’s separation theorem for difference equations (see, e.g., [S]), all non-trivial solutions are oscillatory, so, in studying the question of whether a solution {x,> of (1) is oscillatory, it is no restricti...
متن کاملOscillation criteria for second order quasi-linear neutral delay differential equations
New oscillation criteria for the second order nonlinear neutral delay differential equation [y(t) + p(t)y(t− τ)]′′ + q(t) f(y(g(t))) = 0, t ≥ t0 are given. The relevance of our theorems becomes clear due to a carefully selected example.
متن کاملSome Oscillation Results for Second Order Neutral Type Difference Equations
This paper is concerned with the oscillatory behavior of second order neutral difference equations. Four oscillation theorems for such equations are established and examples are given to illustrate the results. Mathematics subject classification (2010): 39A11.
متن کاملOscillation criteria for second order nonlinear neutral differential equations
This paper is concerned with the oscillation of second-order nonlinear neutral differential equations of the form [ r(t)[(x(t) + p(t)x(σ(t)))′]γ ]′ + f(t, x(τ(t))) = 0, by using a generalized Riccati’s technique and integral averaging technique, we establish new oscillation results which handle some cases not covered by known criteria.
متن کاملOscillation Criteria for Second-Order Nonlinear Neutral Delay Differential Equations
Some sufficient conditions are established for the oscillation of second-order neutral differential equation x t p t x τ t ′′ q t f x σ t 0, t ≥ t0, where 0 ≤ p t ≤ p0 < ∞. The results complement and improve those of Grammatikopoulos et al. Ladas, A. Meimaridou, Oscillation of second-order neutral delay differential equations, Rat. Mat. 1 1985 , Grace and Lalli 1987 , Ruan 1993 , H. J. Li 1996 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2002
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(02)00118-9